In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy.
نویسندگان
چکیده
Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42 ± 36.69% and 130.58 ± 31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17 ± 14.65%, 24.52 ± 20.66%, respectively, CBV dropped to 62 ± 18.56% and 59 ± 18.48%. And the absolute SO2 decreased by 40.52 ± 22.42% and 54.24 ± 11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.
منابع مشابه
Early monitoring of cerebral hypoperfusion in rats by laser speckle imaging and functional photoacoustic microscopy.
Because cerebral hypoperfusion brings damage to the brain, prevention of cerebrovascular diseases correlative to hypoperfusion by studying animal models makes great sense. Since complicated cerebrovascular adaptive changes in hypoperfusion could not be revealed only by cerebral blood flow (CBF) velocity imaging, we performed multi-parameter imaging by combining laser speckle imaging and functio...
متن کاملDedication This work is dedicated to
In-vivo Optical Imaging and Spectroscopy of Cerebral Hemodynamics Chao Zhou Arjun G. Yodh Functional optical imaging techniques, such as diffuse optical imaging and spectroscopy and laser speckle imaging (LSI), were used in research and clinical settings to measure cerebral hemodynamics. In this thesis, theoretical and experimental developments of the techniques and their in-vivo applications r...
متن کاملTranscranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy.
Optical imaging of changes in total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO(2)) provides a means to investigate brain hemodynamic regulation. However, high-resolution transcranial imaging remains challenging. In this study, we applied a novel functional photoacoustic microscopy technique to probe the responses of single cortical vessels ...
متن کاملProphylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection.
BACKGROUND AND PURPOSE Hypoperfusion-induced thrombosis is an important mechanism for postsurgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of t...
متن کاملNeurovascular coupling: in vivo optical techniques for functional brain imaging
Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2012